* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(s(x),y,y) -> f(y,x,s(x)) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2} / {s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(s(x),y,y) -> c_1(f#(y,x,s(x))) g#(x,y) -> c_2() g#(x,y) -> c_3() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(x),y,y) -> c_1(f#(y,x,s(x))) g#(x,y) -> c_2() g#(x,y) -> c_3() - Weak TRS: f(s(x),y,y) -> f(y,x,s(x)) g(x,y) -> x g(x,y) -> y - Signature: {f/3,g/2,f#/3,g#/2} / {s/1,c_1/1,c_2/0,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(s(x),y,y) -> c_1(f#(y,x,s(x))) g#(x,y) -> c_2() g#(x,y) -> c_3() * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(x),y,y) -> c_1(f#(y,x,s(x))) g#(x,y) -> c_2() g#(x,y) -> c_3() - Signature: {f/3,g/2,f#/3,g#/2} / {s/1,c_1/1,c_2/0,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:f#(s(x),y,y) -> c_1(f#(y,x,s(x))) 2:S:g#(x,y) -> c_2() 3:S:g#(x,y) -> c_3() The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/3,g/2,f#/3,g#/2} / {s/1,c_1/1,c_2/0,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))